Skip to main content

Tag: Weiner

Synthetic DNA-delivered Antibodies Protect Against Ebola in Preclinical Studies Representing a Novel Platform for Antibody Therapies for Outbreak Infections

PHILADELPHIA — (Nov. 13, 2018) — Scientists at The Wistar Institute and collaborators have successfully engineered novel DNA-encoded monoclonal antibodies (DMAbs) targeting Zaire Ebolavirus that were effective in preclinical models. Study results, published online in Cell Reports, showed that DMAbs were expressed over a wide window of time and offered complete and long-term protection against lethal virus challenges. DMAbs may also provide a novel powerful platform for rapid screening of monoclonal antibodies enhancing preclinical development.

Ebola virus infection causes a devastating disease, known as Ebola virus disease, for which no licensed vaccine or treatment are available. The 2014-2016 Zaire Ebola virus epidemic in West Africa was the most severe reported to date, with more than 28,600 cases and 11,325 deaths according to the Center for Disease Control. A new outbreak is ongoing in the Democratic Republic of Congo, with a death toll of more than 200 people since August. One of the experimental avenues scientists are pursuing is evaluating the safety and efficacy of monoclonal antibodies isolated from survivors as promising candidates for further development as therapeutics against Ebola virus infection. However, this approach requires high doses and repeated administration of recombinant monoclonal antibodies that are complex and expensive to manufacture, so meeting the global demand while keeping the cost affordable is challenging.

“Our studies show deployment of a novel platform that rapidly combines aspects of monoclonal antibody discovery and development technology with the revolutionary properties of synthetic DNA technology,” said lead researcher David B. Weiner, Ph.D., executive vice president and director of Wistar’s Vaccine & Immunotherapy Center, and W.W. Smith Charitable Trust Professor in Cancer Research.

Weiner’s lab designed and enhanced optimized DMAbs that, when injected locally, provide the genetic blueprint for the body to make functional and protective Ebola virus-specific antibodies, circumventing multiple steps in the antibody development and manufacturing process. Dozens of DMAbs were tested in mice and the best-performing ones were selected for further studies. These proved to be highly effective for providing complete protection from disease in challenge studies.

“Due to intrinsic biochemical properties, some monoclonal antibodies might be difficult and slow to develop or even impossible to manufacture, falling out of the development process and causing loss of potentially effective molecules,” added Weiner. “The DMAb platform allows us to collect protective antibodies from protected persons and engineer and compare them rapidly and then deliver them in vivo to protect against infectious challenge. Such an approach could be important during an outbreak, when we need to design, evaluate and deliver life-saving therapeutics in a time-sensitive manner.”

“We started with antibodies isolated from survivors and compared the activity of anti-Ebola virus DMAbs and recombinant monoclonal antibodies over time,” said Ami Patel, Ph.D., first author on the study and associate staff scientist in the Wistar Vaccine and Immunotherapy Center. “We showed that in vivo expression of DMAbs supports extended protection over traditional antibody approaches.”

The researchers also looked at how DMAbs physically interact with their Ebola virus targets, called epitopes, and confirmed that DMAbs bind to identical epitopes as the corresponding recombinant monoclonal antibodies made in traditional bioprocess facilities.

The Weiner Laboratory is also developing an anti-Ebola virus DNA vaccine. Preclinical results from this efforts were published recently in the Journal of Infectious Diseases.

Co-authors of this study from The Wistar Institute include Daniel H. Park, Marguerite E. Gorman, Sarah T.C. Elliott, Rianne Esquivel, and Kar Muthumani. Other co-authors include Carl W. Davis and Rafi Ahmed from Emory University; Trevor R.F. Smith, Charles Reed, Megan C. Wise, Jian Yan, Jing Chen, Kate E. Broderick, Laurent Humeau, and Niranjan Y. Sardesai from Inovio Pharmaceuticals; Anders Leung, Kevin Tierney, Trina Racine, Shihua He, Xiangguo Qiu, and Darwyn Kobasa from Public Health Agency of Canada; Aubrey Bryan, Edgar Davidson and Benjamin J. Doranz from Integral Molecular; Xiaoying Yu and Erica Ollmann Saphire from The Scripps Research Institute, La Jolla; James E. Crowe from Vanderbilt University; and Gary P. Kobinger from Université Laval, Canada.

This work was supported by a grant from the Defense Advanced Research Projects Agency (DARPA) awarded to Inovio Pharmaceuticals and by National Institutes of Health contract HHSN272201400058C.

In Vivo-delivered Synthetic Human DMAbs Protect Against Ebolavirus Infection in a Mouse Model,
Cell Reports (2018). Advanced online publication.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Synthetic DNA Vaccine Against Ebola Virus Shows Potent and Long-term Efficacy in Preclinical Studies

PHILADELPHIA — (October 10, 2018) — A novel synthetic DNA vaccine developed based on technology pioneered by scientists at The Wistar Institute Vaccine & Immunotherapy Center offers complete protection from Zaire Ebolavirus (EBOV) infection in promising preclinical research. Study results were published online in the Journal of Infectious Diseases.

Ebola virus infection causes a severe hemorrhagic fever that has a 50% fatality rate, according to the World Health Organization. Recent advances have led to the development of promising experimental vaccine candidates that may be associated with side effects and/or may not be applicable in specific vulnerable populations, such as children, pregnant women and immunocompromised individuals. In addition, there is a need to boost these vaccines to provide long-term protection.

Using a unique approach, Wistar scientists designed optimized synthetic DNA vaccine candidates targeting a virus surface protein called glycoprotein. They demonstrated efficacy of the novel vaccine candidates and durability of the immune responses in animal models. Importantly, results showed strong immune responses one year after the last dose, supporting the long-term immunogenicity of the vaccine – a particularly challenging area for Ebola vaccines.

“Synthetic non-viral based DNA technology allows for rapid vaccine development by delivery directly into the skin, resulting in consistent, potent and rapid immunity compared to traditional vaccine approaches,” said lead researcher David B. Weiner, Ph.D., executive vice president and director of Wistar’s Vaccine & Immunotherapy Center, and W.W. Smith Charitable Trust Professor in Cancer Research. “An anti-Ebola virus DNA vaccine like this may provide an important new tool for protection, and we are excited to see what future studies will unveil.”

The researchers optimized a shorter, dose-sparing, immunization regimen and simplified vaccine administration directly into the skin. This new approach induced rapid and protective immunity from virus challenges. The detected antibody levels were equal or higher to those reported for other vaccines currently being evaluated in the clinic, according to the study.

“The success of intradermal delivery of a low-dose regimen is very encouraging,” said Ami Patel, Ph.D., associate staff scientist in the Weiner Lab. “The ultimate goal of our work is to create effective and safe vaccines that are optimized for field use in at-risk areas.”

This work was supported in part by a grant from the Defense Advanced Research Projects Agency (DARPA) to Inovio Pharmaceuticals and a subcontract to The Wistar Institute/University of Pennsylvania. Additional funding was provided by Inovio Pharmaceuticals.

Co-authors of this study from The Wistar Institute include Emma L. Reuschel, Daniel H. Park, Amelia A. Keaton, and Kar Muthumani. Other co-authors include Kimberly A. Kraynyak, Dinah Amante, Megan C. Wise, Jewell Walters, Jean Boyer, Kate E. Broderick, Jian Yan, Amir S. Khan, and Niranjan Y. Sardesai from Inovio Pharmaceuticals, Inc.; Trina Racine, Jonathan Audet, Gary Wong, Marc-Antoine de La Vega, Shane Jones, Alexander Bello, Geoff Soule, Kaylie N. Tran, Shihua He, Kevin Tierney, and Xiangguo Qiu from National Microbiology Laboratory, Public Health Agency of Canada; Veronica L. Scott from William Carey University; Daniel O. Villarreal, Devon J. Shedlock, and Ross Plyler from University of Pennsylvania; Gary P. Kobinger from Université Laval, Canada.

###

The Wistar Institute is an international leader in biomedical research with special expertise in cancer and infectious disease research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.